next up previous
Next: Plate, steady 1-D Helmholtz. Up: Rectangular Coordinates. Helmholtz Equation. Previous: Infinite body,rectangular coordinate, steady

Semi infinite body, steady 1-D Helmholtz.

X10 Semi-infinite body, 0 < x < $ \infty$, with G = 0 (Dirichlet) at x = 0.

GX10(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
e^{-mx^{\prime }}\sinh mx/m ...
...\\ 
e^{-mx}\sinh mx^{\prime }/m & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
e^{-mx^{\prime }}\sinh mx/m & \text{for }x<x^{\prime } \\ 
e^{-mx}\sinh mx^{\prime }/m & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
e^{-mx^{\prime }}\sinh mx/m &...
...\\ 
e^{-mx}\sinh mx^{\prime }/m & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X20 Semi-infinite body, 0 < x < $ \infty$, with $ \partial$G/$ \partial$x = 0 at x=0.

GX20(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
e^{-mx^{\prime }}\cosh mx/m ...
...\\ 
e^{-mx}\cosh mx^{\prime }/m & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
e^{-mx^{\prime }}\cosh mx/m & \text{for }x<x^{\prime } \\ 
e^{-mx}\cosh mx^{\prime }/m & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
e^{-mx^{\prime }}\cosh mx/m &...
...\\ 
e^{-mx}\cosh mx^{\prime }/m & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X30 Semi-infinite body, 0 < x < $ \infty$, with - k$ \partial$G/$ \partial$x + hG = 0 (convection) at x = 0. Note that B = h/(km).

GX30(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
\begin{array}{c}
\left[ e^{-...
...-m(x+x^{\prime })}\right]
/(2m) & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
\begin{array}{c}
\left[ e^{-m(x^{\prime }-x)}+\...
...}{1+B}e^{-m(x+x^{\prime })}\right]
/(2m) & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
\begin{array}{c}
\left[ e^{-m...
...-m(x+x^{\prime })}\right]
/(2m) & \text{for }x>x^{\prime }
\end{array}
}\right.$    



Kevin D. Cole
2002-12-31