 
 
 
 
 
   
|  | = | -  (x - x  )  on domain  0 < x < L | (4) | 
| ki  + hiG | = | 0; i = 1 or 2 | (5) | 
 with the exception of special case X22 which is discussed later.
with the exception of special case X22 which is discussed later. 
| Case | Range | 1D steady GF; units are meters. | 
| X11 | x > x  | x  (1 - x/L) | 
| x < x  | x(1 - x  /L) | |
| X12 | x > x  | x  | 
| x < x  | x | |
| X13 | x > x  | x  [1 - B2(x/L)/(1 + B2)] | 
| x < x  | x[1 - B2(x  /L)/(1 + B2)] | |
| X21 | x > x  | L - x | 
| x < x  | L - x  | |
| X22 * | x > x  | (
x  2 + (x)2)/(2L) - x + L/3 | 
| x < x  | (
x2 + (x  2)2)/(2L) - x  + L/3 | |
| X23 | x > x  | L(1 + 1/B2 - x/L) | 
| x < x  | L(1 + 1/B2 - x  /L) | |
| X31 | x > x  | (B1x  - B1x  x/L + L - x)/(1 + B1) | 
| x < x  | (B1x - B1xx  /L + L - x  )/(1 + B1) | |
| X32 | x > x  | L(1/B1 + x  /L) | 
| x < x  | L(1/B1 + x/L) | |
| X33 | x > x  |  B1B2x  + B1x  - B1B2x  x/L - B2x + B2L + L  | 
| ÷ (B1B2 + B1 + B2) | ||
| x < x  |  B1B2x + B1x - B1B2x  x/L - B2x  + B2L + L  | |
| ÷ (B1B2 + B1 + B2) | 
| G1D(x, x  ) =    | (6) | 
 ) denotes
the norm of the nth 
eigenfunction.
(Strictly speaking, these are the squares of the norms of the eigenfunctions.)
Eigenfunctions Xn(x) satisfy the following 
differential equation:
) denotes
the norm of the nth 
eigenfunction.
(Strictly speaking, these are the squares of the norms of the eigenfunctions.)
Eigenfunctions Xn(x) satisfy the following 
differential equation:
| Xn
' '
(x) +  Xn(x) = 0. | (7) | 
| Case | Xn(x) | Nx-1 | ||||||||
| X11 | sin(  x) | 2/L | ||||||||
| X12 | sin(  x) | 2/L | ||||||||
| X13 | sin(  x) | 2  /L | ||||||||
| X21 | cos(  x) | 2/L | ||||||||
| X22 | 
 | 
 | ||||||||
| X23 | cos(  x) | 2  /L | ||||||||
| X31 | sin(  (L - x)) | 2  /L | ||||||||
| X32 | cos(  (L - x)) | 2  /L | ||||||||
| X33 |  Lcos(  x) + (h1L/k)sin(  x) | 2  /L | ||||||||
| note: |  =  (  L)2 + (hiL/k)2 ![$ \left.\vphantom{ (\lambda
_{n}L)^{2}+(h_{i}L/k)^{2}}\right]$](img465.gif) ÷  (  L)2 + (hiL/k)2 + hiL/k ![$ \left.\vphantom{ (\lambda
_{n}L)^{2}+(h_{i}L/k)^{2}+h_{i}L/k}\right]$](img467.gif) | |||||||||
|  =  ÷  (  L)2 + (h1L/k)2 + (h1L/k)   ![$ \left.\vphantom{ (\lambda
_{n}L)^{2}+(h_{1}L/k)^{2}+(h_{1}L/k)\phi _{2n}}\right]$](img469.gif) | ||||||||||
| Case | Eigencondition | Eigenvalues | 
| X11 | sin(  L) = 0 |  , 
n = 1, 2,... | 
| X12 | cos(  L) = 0 |  , 
n = 1, 2,... | 
| X13 |  Lcot(  L) = - h2L/k | |
| X21 | cos(  L) = 0 |  , 
n = 1, 2,... | 
| X22 | sin(  L) = 0 |  , 
n = 0, 1, 2,... | 
| X23 |  Ltan(  L) = h2L/k | |
| X31 |  Lcot(  L) = - h1L/k | |
| X32 |  Ltan(  L) = h1L/k | |
| X33 | tan(  L) = [  (h1 + h2)/k]/[  - h1h2k-2] | 
 
 
 
 
