next up previous
Next: About this document ...

Errata
Heat Conduction using Green's Functions
Hemisphere, 1992

Chapter I
Page Error Correction
xvi $ \alpha$...W/m2 $ \alpha$...m2/s
xxvi, Eq. (I.32) qi = + $ \sum$... qi = - $ \sum$...
xxvii, Eq. (I.34) $ \nabla$ . (k$ \nabla$T) - k$ \nabla$T
xxvii, Eq. (I.35) - k$ \nabla^{2}_{}$T - $ \nabla$ . (k$ \nabla$T)



Chapter 1
Page Error Correction
1, 2nd line (1773-1841) (1793-1841)
9, Eq. (1.13) $ {\frac{T_1}{2}}$ - $ {\frac{T_1}{2}}$
15, ex. 1.4 $\displaystyle {\frac{1}{\alpha}}$$\displaystyle {\frac{\partial^2T}{\partial x^2}}$ $\displaystyle \alpha$$\displaystyle {\frac{\partial^2T}{\partial x^2}}$
17, ex. 1.5 (same error in two places) $\displaystyle {\frac{1}{\alpha}}$$\displaystyle {\frac{\partial^2T}{\partial x^2}}$ $\displaystyle \alpha$$\displaystyle {\frac{\partial^2T}{\partial x^2}}$
19, 5th line from bottom = G(x', - t| x, - $ \tau$) = G(x', - $ \tau$| x, - t)
22, Prob. 1.7 T = x2 + T0 T = T1(x/L)2 + T0



Chapter 2
Page Error Correction

25, Eq. (2.4)

fi(ri, t) $f_i(\mbox{\bf r}_i, t)$
25, Eq. (2.8) $ \left.\vphantom{ h_i T }\right.$hiT$ \left.\vphantom{ h_i T }\right\vert$ $ \left.\vphantom{ h_i T }\right.$hiT$ \left.\vphantom{ h_i T }\right\vert _{r_i}^{}$
28, Table 2.2, fifth line f (t) = Ctp f (t) = Ctp, p > 1
30, Fig. 2.4 (d), T T = t
far right boundary    
32, Fig 2.6 caption X33 ... B0x5 X33 ... B0y5
37, Prob. 2.10b - $ \partial$C/$ \partial$x $ \partial$C/$ \partial$x



Chapter 3
Page Error Correction
40, Eq. (3.4c) G(x, t = 0| x$\scriptstyle \prime$,$ \tau$) = 0 G(x, t| x$\scriptstyle \prime$,$ \tau$) = 0
42, Eq. (3.12),(3.13) $ \partial$ni $ \partial$n$\scriptstyle \prime$i
and (3.15) (3 places)    
42, above Eq. (3.15) T = fi(t) T = fi($ \tau$)
43, Eq. (3.16) third line xi x$\scriptstyle \prime$i
43, Eq. (3.18) - k$ {\frac{\partial T}{\partial x}}$ + k$ {\frac{\partial T}{\partial x}}$
44, Fig. 3.1 - k$ {\frac{\partial T}{\partial x}}$ + k$ {\frac{\partial T}{\partial x}}$
45, Fig. 3.2 = h(T|x = 0 - T$\scriptstyle \infty$) = h(T$\scriptstyle \infty$ - T|x = 0)
49, 2nd line left side ... right side ...
50, Eq. (3.40) T$\displaystyle {\frac{\partial G}{\partial n_i}}$ T$\displaystyle {\frac{\partial G}{\partial n^{\prime}_i}}$
51, above Eq. (3.46b) ... term is ... term is (with ki $ \rightarrow$ k)
51, Eq. (3.46b) replace ki k
56, Eq. (3.60) hiT* $ \left.\vphantom{ h_i T^* }\right.$hiT*$ \left.\vphantom{ h_i T^* }\right\vert _{r_i}^{}$
57, Eq. (3.65) ki$ {\frac{\partial T^{\prime}}{\partial n_i}}$ + hiT$\scriptstyle \prime$ = ($ \rho$cb)i$ {\frac{\partial T^{\prime}}{\partial t}}$ ki$ \left.\vphantom{ \frac{\partial T^{\prime}}{\partial n_i} }\right.$$ {\frac{\partial T^{\prime}}{\partial n_i}}$ $ \left.\vphantom{ \frac{\partial T^{\prime}}{\partial n_i} }\right\vert _{r_i}^{}$ + $ \left.\vphantom{ h_i T^{\prime} }\right.$hiT$\scriptstyle \prime$$ \left.\vphantom{ h_i T^{\prime} }\right\vert _{r_i}^{}$
    = ($ \rho$cb)i$ \left.\vphantom{ \frac{\partial T^{\prime}}{\partial t}}\right.$$ {\frac{\partial T^{\prime}}{\partial t}}$ $ \left.\vphantom{ \frac{\partial T^{\prime}}{\partial t}}\right\vert _{r_i}^{}$
58, 4th line T'(L, t) = (Tl... T'(L, t) = (TL...
58, Eq. (3.67a) (TL-T0)$\displaystyle {\frac{2 \pi a}{\omega L^2}}$ (TL-T0)$\displaystyle {\frac{2 \pi \alpha}{\omega L^2}}$
59, 4th line from bottom m2$ \pi^{2}_{}$$ \alpha$(... m2$ \pi^{2}_{}$$ \alpha$/(...
62, Eq. (3.80) W(r, t) $ \left.\vphantom{ W(r,t) }\right.$W(r, t)$ \left.\vphantom{ W(r,t) }\right\vert _{r_i}^{}$
62, Eq. (3.81) 2w  dx 2wh  dx
63, below Eq. (3.84) For the problem at hand The initial and boundary
  the boundary  
63, below Eq. (3.84) $ \theta$(x, 0) = T0 - T$\scriptstyle \infty$ $ \theta$(x, 0) = 0
  $ \theta$(0, t) = 0 $ \theta$(0, t) = T0 - T$\scriptstyle \infty$
63, Eq. (3.85) W(x, 0) = (T0 - T$\scriptstyle \infty$)em2$\scriptstyle \alpha$t W(x, 0) = 0
  W(0, t) = 0 W(0, t) = (T0 - T$\scriptstyle \infty$)em2$\scriptstyle \alpha$t
64, Eq. (3.87) $ {\frac{2 \pi}{L}}$ $ {\frac{2 \pi}{L^2}}$
64, below Eq. (3.87) $ {\frac{2 \pi}{L}}$ 2$ \pi$
and Eq. (3.88)    
64, below Eq. (3.87) (m2 + n2$ \pi^{2}_{}$)-1 (m2L2 + n2$ \pi^{2}_{}$)-1
and Eq. (3.88)    
66, Eq. (3.94), last line fj(rj) fj(r$\scriptstyle \prime$j)
67, below Eq. (3.99) d (sinh  z)dz d (sinh  z)/dz
69, Eq. (3.108a) = Tx$\scriptstyle \infty$1(x, y, t)... = hx1Tx$\scriptstyle \infty$1(x, y, t)...
70, Eq. (3.113) Lx, two places L
70, Eq. (3.113) (V2t)/(2$ \alpha$) (V2t)/(4$ \alpha$)
70, Eq. (3.114) (V2t)/(2$ \alpha$) (V2t)/(4$ \alpha$)
71, Eq. (3.122) Tx2(y', z',$ \tau$)eV2$\scriptstyle \tau$/(4$\scriptstyle \alpha$) Tx2(y', z',$ \tau$)e-VL/(2$\scriptstyle \alpha$) + V2$\scriptstyle \tau$/(4$\scriptstyle \alpha$)
71, Eq. (3.123) Tx2($ \tau$)eVL/(4$\scriptstyle \alpha$) + V2$\scriptstyle \tau$/(4$\scriptstyle \alpha$) Tx2($ \tau$)eVL/(2$\scriptstyle \alpha$) + V2$\scriptstyle \tau$/(4$\scriptstyle \alpha$)
74, Reference ... Conduction ... Conduction,
    Ill-Posed Problems
75, Prob. 3.17a y' = y(ky/kx)1/2 y' = y(kx/ky)1/2
75, Prob. 3.17a b' = b(ky/kx)1/2 b' = b(kx/ky)1/2
76, 3rd line from bottom $\displaystyle {\frac{\partial T}{\partial t}}$ $\displaystyle {\frac{\partial W}{\partial t}}$
77, 1st paragraph, 10th line ``but the equations "but the integrations
  can be performed'' can be performed''



Chapter 4
Page Error Correction
81 and 82, Fig. 4.2 and 4.3
0.0000 - | -
0.0000 - | -
0.0000 - | -
10-5 - | -
10-6 - | -
10-7 - | -
82, 2nd line L[f (t)] $ \mathcal {L}$[f (t)]
below Eq. 4.3    
84, Eq. (4.12b) s$ \overline{T}$(x, s) - sT(x, 0) s$ \overline{T}$(x, s) - T(x, 0)
85, below Eq. (4.17) ``given by Eq. (6.16)'' ``given by Eq. (1.39)''
86, Eq. (4.19b) = 0 is finite
87, Eq. (4.28b) = 0 is finite
88, Eq. (4.33) $\displaystyle {\frac{\partial r G}{\partial t}}$ $\displaystyle {\frac{\partial G}{\partial t}}$
91, line 23 and 24 ... one insulated boundary (X21) ... two insulated boundaries (X22)
94, Eq. (4.70), right side 0    m = n 0    m $ \neq$ n
97, below Eq. (4.86) ``with C = 0 . . .'' ``with B = 0 . . . ''
97, Eq. (4.87), e- $\scriptstyle \beta_{m}$$\scriptstyle \alpha$t/L2n e- $\scriptstyle \beta^{2}_{n}$$\scriptstyle \alpha$t/L2
98, Eqs. (4.92) and (4.93) e- $\scriptstyle \beta_{m}$$\scriptstyle \alpha$t/L2n e- $\scriptstyle \beta^{2}_{n}$$\scriptstyle \alpha$t/L2
98, Eq. (4.95a) e- $\scriptstyle \beta_{n}$$\scriptstyle \alpha$... e- $\scriptstyle \beta^{2}_{n}$$\scriptstyle \alpha$...
98, 6th line exp[- $ \beta^{2}_{n}$$ \alpha$t/L2] exp[- $ \beta^{2}_{n}$$ \alpha$(t - $ \tau$)/L2]
below Eq. (4.95b)    
99, Table 4.2, caption e - $ \beta^{2}_{m}$$ \alpha$(t - $ \tau$)/L2 exp[- $ \beta^{2}_{m}$$ \alpha$(t - $ \tau$)/L2]
110, Eq. (4.124) quotient line [--- -] [----]
  should be one piece  
112, Eq. (4.129) [$\displaystyle {\frac{-x^2+y^2+z^2}{4 \alpha (t- \tau )}}$] [- $\displaystyle {\frac{(x^2+y^2+z^2)}{4\alpha (t- \tau )}}$]
114, below Eq. (4.133) du = t - $ \tau$ u = t - $ \tau$



Chapter 5
Page Error Correction
126, Table 5.3, Eq. 1., 2nd line
$ \left\{\vphantom{ erfc \left[ \frac{z}{(4 \alpha t)^{1/2}} \right] }\right.$erfc$ \left[\vphantom{ \frac{z}{(4 \alpha t)^{1/2}} }\right.$$ {\frac{z}{(4 \alpha t)^{1/2}}}$ $ \left.\vphantom{ \frac{z}{(4 \alpha t)^{1/2}} }\right]$ $ \left.\vphantom{ erfc \left[ \frac{z}{(4 \alpha t)^{1/2}} \right] }\right.$
$ \left.\vphantom{ - erfc \left[ \frac{z+L}{(4 \alpha t)^{1/2}} \right] }\right.$ - erfc$ \left[\vphantom{ \frac{z+L}{(4 \alpha t)^{1/2}} }\right.$$ {\frac{z+L}{(4 \alpha t)^{1/2}}}$ $ \left.\vphantom{ \frac{z+L}{(4 \alpha t)^{1/2}} }\right]$ $ \left.\vphantom{ - erfc \left[ \frac{z+L}{(4 \alpha t)^{1/2}} \right] }\right\}$
+2$ {\frac{\alpha t }{L}}$[2K...
$ \left\{\vphantom{ erfc \left[ \frac{z+L}{(4 \alpha t)^{1/2}} \right] }\right.$erfc$ \left[\vphantom{ \frac{z+L}{(4 \alpha t)^{1/2}} }\right.$$ {\frac{z+L}{(4 \alpha t)^{1/2}}}$ $ \left.\vphantom{ \frac{z+L}{(4 \alpha t)^{1/2}} }\right]$ $ \left.\vphantom{ erfc \left[ \frac{z+L}{(4 \alpha t)^{1/2}} \right] }\right.$
$ \left.\vphantom{ - erfc \left[ \frac{z}{(4 \alpha t)^{1/2}} \right] }\right.$ - erfc$ \left[\vphantom{ \frac{z}{(4 \alpha t)^{1/2}} }\right.$$ {\frac{z}{(4 \alpha t)^{1/2}}}$ $ \left.\vphantom{ \frac{z}{(4 \alpha t)^{1/2}} }\right]$ $ \left.\vphantom{ - erfc \left[ \frac{z}{(4 \alpha t)^{1/2}} \right] }\right\}$
+2$ {\frac{\alpha t }{L}}$[K...
129, Eq. (5.21b) i0erfc(u) (delete this term)
136, bottom line ]2}du ]}2du
139, prob. 5.1 ``Eq. (5.11) with m = 1.'' ``Eq. (5.11) with $ \beta_{m}^{}$ = m$ \pi$.''

Chapter 6
Page Error Correction
143, Table 6.1, 2nd line - $ {\frac{1}{L}}${MD1L  ER...} {MD1  ER...}
143, middle of Table 6.1 S1 = $ {\frac{L}{2C_1}}$[...],  C1 < $ {\frac{1}{4}}$B1 S1 = $ {\frac{1}{2C_1 L}}$[...],  C1 < $\displaystyle {\frac{1}{4 B_1}}$
143, middle of Table 6.1 S2 = = $ {\frac{L}{2C_1}}$[...] S2 = $ {\frac{1}{2C_1 L}}$[...]
146, Table 6.3 case X40B1T00, E1 = 1 case X40B1T00, E1 = 0
147, Table 6.4, column 2 erf[(4z)1/2] erf[(4z)-1/2]
152, Figure 6.5 Wrong figure. Correct figure below $ \downarrow$
156, Eq. (6.42a), 2nd line +2 erfc$ \left[\vphantom{ \frac{L+x}{(4\alpha t)^{1/2} } }\right.$$ {\frac{L+x}{(4\alpha t)^{1/2} }}$ $ \left.\vphantom{ \frac{L+x}{(4\alpha t)^{1/2} } }\right]$ + erfc$ \left[\vphantom{ \frac{L+x}{(4\alpha t)^{1/2} } }\right.$$ {\frac{L+x}{(4\alpha t)^{1/2} }}$ $ \left.\vphantom{ \frac{L+x}{(4\alpha t)^{1/2} } }\right]$
157, Eq. (6.42b), 1st line -2 erfc$ \left[\vphantom{ \frac{2L-x}{(4\alpha t)^{1/2} } }\right.$$ {\frac{2L-x}{(4\alpha t)^{1/2} }}$ $ \left.\vphantom{ \frac{2L-x}{(4\alpha t)^{1/2} } }\right]$ +2 erfc$ \left[\vphantom{ \frac{2L-x}{(4\alpha t)^{1/2} } }\right.$$ {\frac{2L-x}{(4\alpha t)^{1/2} }}$ $ \left.\vphantom{ \frac{2L-x}{(4\alpha t)^{1/2} } }\right]$
157, above Eq. (6.43) Eqs. (6.42a) and (6.42b) Eq. (6.42a), Eq. (6.42b)
    and the n = 1 term
158, 2nd line of Eq. (6.44b) L $ \bullet$ x < < L (L - x) < < L.
160, 3rd line below Eq. (6.54) in Table 4.2 in Table 4.3
161, 2nd line below Eq. (6.56) - $ \beta_{m}^{}$$ \alpha$t/L2 $ \beta^{2}_{m}$$ \alpha$t/L2
161, 9th line below Eq. (6.56) - $ \beta_{m}^{}$$ \alpha$t/L2 $ \beta^{2}_{m}$$ \alpha$t/L2
161, Eq. (6.57), 3 places $\displaystyle {\frac{\beta _m \alpha t}{L^2}}$ $\displaystyle {\frac{\beta^2_m \alpha t}{L^2}}$
161, Eq. (6.58) m $ \leq$ (  )1/2 m > (  )1/2
161, 2nd line below Eq. (6.58) m $ \leq$ 8 m > 8
166, Eq. (6.78), third line [$\displaystyle {\textstyle\frac{1}{2}}$($\displaystyle {\frac{x^{\prime}}{L}}$)2 - $\displaystyle {\frac{x^{\prime}}{L}}$] [$\displaystyle {\textstyle\frac{1}{2}}$($\displaystyle {\frac{x^{\prime}}{L}}$)2 - $\displaystyle {\frac{x^{\prime}}{L}}$ + $\displaystyle {\frac{\alpha t}{L^2}}$]
166, end of Eq. (6.78) } ]
178, Eq. (6.115d) $\displaystyle \left.\vphantom{ \frac{\partial T}{\partial x} }\right.$$\displaystyle {\frac{\partial T}{\partial x}}$ $\displaystyle \left.\vphantom{ \frac{\partial T}{\partial x} }\right\vert _{y=0}^{}$ = 0 $\displaystyle \left.\vphantom{ \frac{\partial T}{\partial y} }\right.$$\displaystyle {\frac{\partial T}{\partial y}}$ $\displaystyle \left.\vphantom{ \frac{\partial T}{\partial y} }\right\vert _{y=0}^{}$ = 0
178, Eq. (6.116), 2nd line $ \left.\vphantom{ (\;\;) }\right.$(    )$ \left.\vphantom{ (\;\;) }\right\vert _{y'=0}^{}$ $ \left.\vphantom{ (\;\;) }\right.$(    )$ \left.\vphantom{ (\;\;) }\right\vert _{y'=b}^{}$
178, Eq. (6.117) GX21Y21(x, t| x$\scriptstyle \prime$,$ \tau$) GX21Y21(x, y, t| x$\scriptstyle \prime$, y$\scriptstyle \prime$,$ \tau$)
187, Caption to Fig. 6.13 | P| > 1 | p| > 1
189, Caption to Fig. 6.15 O(X, Y) $ \theta$(X, Y)
193, Eq. (6.170), first line - $\displaystyle \sum^{\infty}_{m-1}$$\displaystyle {\frac{2L}{\vert x-x^{\prime}\vert}}$ + $\displaystyle \sum^{\infty}_{m-1}$$\displaystyle {\frac{1}{\pi(m-\frac{1}2{})}}$
194, Eq. (6.171) - $ {\frac{q_o}{k}}$ + $ {\frac{q_o}{k}}$
194, Eq. (6.171) $\displaystyle \sum^{\infty}_{m-1}$ $\displaystyle \sum^{\infty}_{m=1}$
194, Eq. (6.172), last line only - exp[- $\displaystyle \pi$(m - $\displaystyle {\textstyle\frac{1}{2}}$)$\displaystyle {\frac{x-9}{L}}$] - exp[+ $\displaystyle \pi$(m - $\displaystyle {\textstyle\frac{1}{2}}$)$\displaystyle {\frac{x-a}{L}}$]
194, Eq. (6.172), 2 places $\displaystyle {\frac{2q_o L}{k}}$ $\displaystyle {\frac{q_o L}{k}}$
194, Eq. (6.172), FOUR places | x| - 9 | x| - a
  | x| + 9 | x| + a
  x + 9 x + a
  x - 9 x - a
197, 2nd line hL/x hL/k

 
Figure: 6.5, page 152. Temperature in a semi-infinite body with surface convection for h($ \alpha$t)1/2/k = 0.1, 0.5, 2.0, $ \infty$.
\includegraphics[height=10cm]{fig6.5.jpg}



Chapter 7
Page Error Correction
204, 3rd line below Eq. (7.8) ``The Eq. (7.5). . . '' ``Then Eq. (7.5). . .''
207, Eq. (7.19) (missing M definition) where M is a finite constant.
214, Eq. (7.58) $\displaystyle {\frac{\partial T(0,t)}{\partial r}}$=0 T(0, t) is finite
215, Eq. (7.61) and (7.62) = $ \approx$
216, Eq. (7.66) and (7.67) $\displaystyle {\frac{1}{\beta_n J_n(\beta_n)}}$ $\displaystyle {\frac{1}{\beta^3_n J_n(\beta_n)}}$
224, Prob. 7.8, 2nd exp term exp$\displaystyle \left[\vphantom{ -\frac{(r-r')^2}{4
\alpha (t-\tau )} }\right.$ - $\displaystyle {\frac{(r-r')^2}{4
\alpha (t-\tau )}}$ $\displaystyle \left.\vphantom{ -\frac{(r-r')^2}{4
\alpha (t-\tau )} }\right]$ exp$\displaystyle \left[\vphantom{ -\frac{(r+r')^2}{4 \alpha (t-\tau )} }\right.$ - $\displaystyle {\frac{(r+r')^2}{4 \alpha (t-\tau )}}$ $\displaystyle \left.\vphantom{ -\frac{(r+r')^2}{4 \alpha (t-\tau )} }\right]$



Chapter 8
Page Error Correction
230, in Fig. 8.4 and 8.5 $ \partial$ $ \delta$
233, below Eq. (8.13d) R01B1T0 Z11B11 R01B1 Z11B11 T1
233, Fig 8.6 T = T0, three places T = T1, three places
233, Fig 8.6 Caption R01B1T0 Z11B11 R01B1 Z11B11 T1
235, above Eq. (8.35) r $ \approx$ 1 r $ \approx$ a

239, Eq. (8.36)

2$\displaystyle {\frac{\alpha t}{a^2}}$ 2$\displaystyle \left(\vphantom{ \frac{\alpha t}{a^2} }\right.$$\displaystyle {\frac{\alpha t}{a^2}}$ $\displaystyle \left.\vphantom{ \frac{\alpha t}{a^2} }\right)^{1/2}_{}$
240, Eq. (8.39) $\displaystyle {\frac{1}{2\sqrt{\pi} t^+}}$ $\displaystyle {\frac{1}{2\sqrt{\pi t^+}}}$
243, Fig. 8.10, on the bottom axis `` 104  103  .01'' `` 10-4  10-3  10-2''
248, Eq. (8.64) $\displaystyle {\frac{1}{B_2}}$ $\displaystyle {\frac{1}{2B_2}}$



Chapter 9
Page Error Correction
253, Eq. (9.2) (r2$\displaystyle {\frac{\partial T}{\partial t}}$) (r2$\displaystyle {\frac{\partial T}{\partial r}}$)
258, Fig. 9.2, 2 labels dV = r2sin$ \theta$ d$ \theta$ dr dV = r2sin$ \theta$ d$ \theta$ dr d$ \phi$
  rsin$ \theta$ d$ \theta$ rsin$ \theta$ d$ \phi$
273, 5th line on page Table 2.8 Table 5.8
283, Eq. (9.118), 2nd line (b - r)(b - a) (b - r)/(b - a)
284, Eq. (9.121) 2$ \pi$$ \alpha$a 2$ \pi$$ \alpha$aT$\scriptstyle \infty$
287, 3rd line on page ``large-time form of GRS10'' ``Green's function''



Chapter 10
Page Error Correction
310, Eq. (10.68) $\displaystyle {\frac{\partial t}{\partial n}}$ $\displaystyle {\frac{\partial T}{\partial n}}$
328, last line Setting $ \beta_{2}^{}$ = h2/k2 Setting B2 = h2/k



Appendix B
Page Error Correction
410, Eq. (B.20c) = Wv(z) W'v(z)



Appendix E
Page Error Correction
414, 1st line One way to expand erf (x) is ... Two ways to expand erf (x) are



Appendix F
Page Error Correction
423, add to last line on page   (continued next page)
424, Eq. 10 (Barber) (erase this citation)
426, Table F.5, No. 1, 2nd line e-4aberfc(a$ \sqrt{x}$ - b/$ \sqrt{x}$) e-4aberfc(a$ \sqrt{x}$ - b/$ \sqrt{x}$))
427, Table F.6, No. 1 erfc(...) erf (...)
427, Table F.6, No. 6, 2nd line -2a$ \sqrt{\pi}$(1 + ...) = - 2a$ \sqrt{\pi}$(1 + ...)



Appendix R
Page Error Correction
431, above Eq. (R00.1a) (missing heading) R00 Infinite Body
436, below table or u > 0.55 for u > 0.55
437, heading below 2nd para. E. 4 R.4
440, Eq. (R02.9) $\displaystyle \left(\vphantom{ \frac{a}{b} }\right.$$\displaystyle {\frac{a}{b}}$ $\displaystyle \left.\vphantom{ \frac{a}{b} }\right)^{2}_{}$ + $\displaystyle {\frac{a}{b}}$$\displaystyle \sum$ $\displaystyle \left(\vphantom{ \frac{a}{b} }\right.$$\displaystyle {\frac{a}{b}}$ $\displaystyle \left.\vphantom{ \frac{a}{b} }\right)^{2}_{}$ + $\displaystyle {\frac{2a}{b}}$$\displaystyle \sum$
441, Eq. (R10.1) e- $\scriptstyle \beta^{2}$(t - $\scriptstyle \tau$)/a2 e- $\scriptstyle \alpha$$\scriptstyle \beta^{2}$(t - $\scriptstyle \tau$)/a2
443, 1st line kGT/$ \partial$r k$ \partial$G/$ \partial$r
444, 3rd line GR20(a, t| a,$ \tau$) : GR20(a, t| a,$ \tau$) are given below.
444, Eq. (R20.6) $ \int_{0}^{\infty}$ $ \int_{a}^{\infty}$
445, 1st line Exact 2$ \pi$GR20(...) Exact 2$ \pi$a2GR20(...)



Appendix R$ \Phi$
Page Error Correction
454, Eq. (R02$ \Phi$12.1) $ \;\stackrel{[}{\textstyle m}\;$ [
457, 5th line below R23$ \Phi$00 - {1 - [nb/($ \beta_{mn}^{}$g)]2}V2mn - {1 - [nb/($ \beta_{mn}^{}$a)]2}V2mn
458 (add at bottom of page) where Rv, N($ \beta_{mn}^{}$), $ \beta_{mn}^{}$,
    N($ \upsilon$), and $ \Phi$ are given
    in tables R$ \Phi$.1-R$ \Phi$.4



Appendix RS
Page Error Correction
464, Table RS.1 replace RS30 case with: $\displaystyle {\frac{1}{r'}}$ - $\displaystyle {\frac{B_1a}{(1+B_1)rr'}}$;  r < r'
    $\displaystyle {\frac{1}{r}}$ - $\displaystyle {\frac{B_1a}{(1+B_1)r'r}}$;  r > r'
465, Eq. (RS02.3), 4th line 2b - r - r 2b - r - r'
465, RS03 + h2G = 0  r = b + h2G = 0 at r = b
466, center of page RS11 ...T = 0 RS11 ...G = 0...
466, Eq. (RS11.1), 2nd line 2n(b - a) + r - r')2 (2n(b - a) + r - r')2
468, Eq. (RS12.5), 3rd line (2b - r - r) (2b - r - r')
469, Eq. (RS22.1), 3rd line cos[$ \beta$(r' - a)/(b - a)] cos[$ \beta_{m}^{}$(r' - a)/(b - a)]
470, above Eq. (RS23.1) G(r, t|$ \theta{^\prime}$,$ \tau$) G(r, t| r',$ \tau$)
471, Eq. (RS33.1b) B1=$\displaystyle {\frac{h_1 a}{k}}$+1 B1=$\displaystyle \left(\vphantom{ \frac{h_1 a}{k}+ 1 }\right.$$\displaystyle {\frac{h_1 a}{k}}$ + 1$\displaystyle \left.\vphantom{ \frac{h_1 a}{k}+ 1 }\right)$$\displaystyle {\frac{b}{a}}$
472, above references Table R0.1 Table R0$ \Phi$.1, p. 459
  Table R0.2 Table R0$ \Phi$.2, p. 459
  Table R0.3 Table R0$ \Phi$.3, p. 460



Appendix X
Page Error Correction
482, Eq. (X11.5) ...]  t - $ \tau$ > 0 ...],    t - $ \tau$ > 0
483, Eq. (X11.13) ...L2  t - $ \tau$ > 0 ...L2,    t - $ \tau$ > 0
485, Eq, (X12.3) GX12(L, t, L,$ \tau$) = GX12(L, t| L,$ \tau$) $ \approx$
486, Eq. X13 Plate k$ \partial$G/$ \partial$x + hT = 0 k$ \partial$G/$ \partial$x + hG = 0
486, Eq. (X13.1), 3rd line (2L - x - ')2 (2L - x - x')2
487, Eq. (X14.1) GX14(x, t| x',$ \tau$) = GX14(x, t| x',$ \tau$) $ \approx$
493, Fig. X20.1 caption 0.5 and 1.0 0.1, 0.25, 1.0, and 10.
497, 1st equation, unnumbered (no number) (X23.7)
501, Eq. (X30.11) = exp[...] = 1 + exp[...]
502, Eq. (X31.6) $\displaystyle \sum_{m=0}^{\infty}$ $\displaystyle \sum_{m=1}^{\infty}$
503, Eq. (X33.2) + B1sin($ \beta_{m}^{}$x/l ) + B1sin($ \beta_{m}^{}$x/L)
503, above Eq. (X33.4) relations relation
504, equation numbers (X33.5) and (X33.5) (X33.5a) and (X33.5b)



Author Index
Page Error Correction
521 Amos, D., 435, 449 Amos, D., 436, 450





 
next up previous
Next: About this document ...
Kevin D. Cole
2003-07-21