next up previous
Next: Plate, steady 1-D. Up: Rectangular Coordinates. Steady 1-D. Previous: Infinite body, rectangular coordinate,

Semi infinite body, steady 1-D.

X10 Semi-infinite body, 0 < x < $ \infty$, with G = 0 (Dirichlet) at x = 0.

GX10(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
x & \text{for }x<x^{\prime } \\ 
x^{\prime } & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
x & \text{for }x<x^{\prime } \\ 
x^{\prime } & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
x & \text{for }x<x^{\prime } \\ 
x^{\prime } & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X20 Semi-infinite body, 0 < x < $ \infty$, with $ \partial$G/$ \partial$x = 0 (Neumann) at x = 0. Note that this geometry requires a pseudo GF, denoted H. The temperature solution found from a pseudo GF requires that the total volumetric heating sums to zero and the spatial average temperature in the body must be supplied as a known condition.

HX20(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
-x^{\prime } & \text{for }x<x^{\prime } \\ 
-x & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
-x^{\prime } & \text{for }x<x^{\prime } \\ 
-x & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
-x^{\prime } & \text{for }x<x^{\prime } \\ 
-x & \text{for }x>x^{\prime }
\end{array}
}\right.$    

X30 Semi-infinite body, 0 < x < $ \infty$, with - k$ \partial$G/$ \partial$x + hG = 0 (convection) at x = 0.

GX30(x $\displaystyle \left\vert\vphantom{ \,x^{\prime }}\right.$ x$\scriptstyle \prime$$\displaystyle \left.\vphantom{ \,x^{\prime }}\right.$) = $\displaystyle \left\{\vphantom{ 
\begin{array}{cc}
-\left( \frac{hx}{k}+1\right...
...rac{hx^{\prime }}{k}+1\right) x & \text{for }x>x^{\prime }
\end{array}
}\right.$$\displaystyle \begin{array}{cc}
-\left( \frac{hx}{k}+1\right) x^{\prime } & \te...
...\left( \frac{hx^{\prime }}{k}+1\right) x & \text{for }x>x^{\prime }
\end{array}$ $\displaystyle \left.\vphantom{ 
\begin{array}{cc}
-\left( \frac{hx}{k}+1\right)...
...rac{hx^{\prime }}{k}+1\right) x & \text{for }x>x^{\prime }
\end{array}
}\right.$    



Kevin D. Cole
2002-12-31