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Number terms steady state

James V. Beck, Nov. 18, 2003


Some steady state multi-dimensional heat conduction solutions have summations of the form
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(1)

We wish to determine the number of terms M to make the second summation to be a small value C such as equal to or less than 1 part in 1010 of the the total sum on the left of eq. (1). The second sum can be written as
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(2)

where 
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Notice that 
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We know that
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(5a)

which leads to 
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(5b)

Then we can write eq. (2) as
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(6)

An explicit form of the total sum given by eq. (1) is found from eq. (6) by setting M equal to zero or 
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(7)


The objective now is to determine the value of M which makes the remainder sum given by eq. (6) divided by the total sum given by eq. (7) equal to a small value C which might be 10-10. We can write
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(8a)

Solving for the maximum number of terms then gives
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(8b)

For R = 0.01, about 732 terms are needed and for R = 0.001, about 7329 terms are needed.

If the remainder is desired to be equal to C = 10-5, rather than C = 10-10, the number of terms is reduced by a factor of only 2. An improvement in the accuracy by a factor 10-5 is obtained with only a doubling in the number of computations.

To verify the result given by eq. (8b), Tables 1 and 2 are given which are based on directly evaluating the sum given by
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(9)

Table 1 is for R = 0.01. Notice that for 732 terms, the ratio given by eq. (8a) is -1.02960e-010 and for 733 the ratio is less than 1.0e-10.  We have experimentally verified the equation for determining the number of required terms given by eq. (8b). Table 2 can be similarly used to verify the result for R = 0.001.


From the above discussion it is seen that the largest number of required terms is for R approaching zero. However, for small values of R an alternative derivation is possible. The summation in eq. (2) can be approximated by
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(10)

for 
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. Using the same ratio of the “tail” given by eq. (10) by the total given by eq. (10) with M = 0 gives
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(11) which happens to yield exactly the same expression as eq. (8b) for the number of  terms.

Case with Summand Divided by m

Another related sum that arises is the sum given by eq. (1) with the integrand divided by m or 
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(12)

This sum is tabulated in Tables 3 and 4 for R = 0.01 and 0.001, respectively. Program sumexp1.m was used. The series is given as a function of M. Also shown are the errors if the series is terminated at a particular M.  One significant difference between the numerical values of the series 
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 are the magnitudes. The former are one or two magnitudes greater; see Tables 2 and 4, for example. However, the number of required terms to determine a specified accuracy does not change that much. For example, using Table 1 for R = 0.01 and 
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 indicates that about 732 terms are needed for an accuracy of 1 part in 1010. Table 3 is for R = 0.01 and 
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 where about 600 terms are needed. This is discussed more below.
The tail of the summation given by eq. (12) approximated by an integral is 
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(13a) 

where E1(z) is the exponential integral. Analogous to eqs. (8a) and (11) we write
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(13b)

Another approximation fixes the denominator and then uses
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(14)

One way to obtain 
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 in eq. (14) is to take the natural logarithm to get 
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(15)
This equation is used in an iterative manner. The procedure can be started with  
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Table 5 provides a comparison of the number of terms needed in the S1 summation obtained in three different ways. The first way is the actual computation of the sum and gives the first M that precedes S1 dipping below the  C = 10-10 value.  The column for this way is denoted 
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. The next column in Table 5 is for 
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 and is based on eq. (13b). The last column is based on eq. (14). The M1 values in Table 5 are not greatly different for a given value of R. For the R = 0.01 value, the numbers of terms indicated by the three ways are 597, 604 and 637. These values are very close and the approximate values (the last two) are conservative since they are larger than the exact result (the first one).
Case with Summand Divided by m2

Another related sum that arises is the sum given by eq. (1) with the integrand divided by m2 or 
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(16)

The tail of the summation given by eq. (16) approximated by an integral is 
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(17a) 

Analogous to eqs. (8a) and (11) we write
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(17b)

Another approximation fixes the denominator and then uses
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(18)

One way to obtain 
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 in eq. (18) is to take the natural logarithm to get 
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(19)

This equation is used in an iterative manner. The procedure can be started with  
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Table 6 provides a comparison of the number of terms needed in the S2 summation obtained in three different ways. The first way is the actual computation of the sum and gives the first M that precedes S1 dipping below the C = 10-10 value.  The column for this way is denoted 
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. The next column in Table 6 is for 
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 and is based on eq. (17b). The last column is based on eq. (18). The M2 values in Table 5 are not greatly different for a given value of R. For the R = 0.01 value, the numbers of terms indicated by the three ways are 435, 452 and 453. These values are very close and the approximate values (the last two) are conservative since they are larger than the exact result (the first one). 
Conclusion


A simple and quite conservative choice for the number of terms in the series is 
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for C = 10-10.  It can be used for S0, S1, and S2. A less conservative choice is about
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for i = 1, 2 and 3. 
Table 1. Exact sum of  
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 as a function of M for R = 0.01. sumexp.m

      M         
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      50    24.819989710048  -2.07880e-001  

    100    29.979558656003  -4.32139e-002  

    150    31.052127662641  -8.98329e-003  

    200    31.275092853348  -1.86744e-003  

    250    31.321442762733  -3.88203e-004  

    300    31.331077962260  -8.06995e-005  

    350    31.333080923456  -1.67758e-005  

    400    31.333497298180  -3.48734e-006  

    450    31.333583853982  -7.24947e-007  

    500    31.333601847165  -1.50702e-007  

    550    31.333605587580  -3.13278e-008  

    600    31.333606365136  -6.51239e-009  

    650    31.333606526774  -1.35377e-009  

700 31.333606560376  -2.81404e-010 

732    31.333606565967  -1.02960e-010

    733    31.333606566067  -9.97745e-011  

    750    31.333606567361  -5.84796e-011  

    800    31.333606568813  -1.21384e-011  

    850    31.333606569115  -2.50487e-012  

    900    31.333606569177  -5.02175e-013  

    950    31.333606569190  -8.62848e-014  

  1000    31.333606569193    

      (     31.333606569194  

Table 2. Exact sum of  
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 as a function of M for R = 0.001. sumexp.m

      M         
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     500   251.743909060428  -2.07880e-001  

   1000   304.076326224795  -4.32139e-002  

   1500   314.955166934334  -8.98329e-003  

   2000   317.216655732221  -1.86744e-003  

   2500   317.686773065448  -3.88203e-004  

   3000   317.784500857514  -8.06995e-005  

   3500   317.804816469527  -1.67758e-005  

   4000   317.809039670345  -3.48734e-006  

   4500   317.809917587542  -7.24947e-007  

   5000   317.810100088597  -1.50702e-007  

   5500   317.810138026839  -3.13278e-008  

   6000   317.810145913425  -6.51239e-009  

   6500   317.810147552885  -1.35378e-009  

7000 317.810147893695  -2.81406e-010

7329   317.810147951319  -1.00091e-010

   7500   317.810147964542  -5.84837e-011  

   8000   317.810147979270  -1.21419e-011  

   8500   317.810147982332  -2.50833e-012  

   9000   317.810147982968  -5.05994e-013  

   9500   317.810147983100  -9.05030e-014  

  10000   317.810147983129    

  10500   317.810147983129    

     (       317.810147983137  

Table 3. Number of terms required in the 
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series. The values found by evaluating the series. R = 0.01.  Sumexp1.m
      M         
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      50     3.388085661718   -2.53219e-002   

    100     3.465415417683   -3.07577e-003   

    150     3.474525440697   -4.55020e-004   

    200     3.475851360079   -7.35824e-005   

    250     3.476063591624   -1.25280e-005   

    300     3.476099471312   -2.20623e-006   

    350     3.476105757185   -3.97919e-007   

    400     3.476106886428   -7.30602e-008   

    450     3.476107093115   -1.36010e-008   

    500     3.476107131494   -2.56009e-009   

    550     3.476107138703   -4.86247e-010   

    600     3.476107140070   -9.30502e-011   

    650     3.476107140331   -1.79195e-011   

    700     3.476107140381   -3.46892e-012   

    750     3.476107140391   -6.73779e-013   

    800     3.476107140393   -1.30438e-013   

    850     3.476107140393   -2.44012e-014   

    900     3.476107140393   -3.70489e-015   

    950     3.476107140393    0.00000e+000   

Table 4.  Number of terms required in the 
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series. The values found by evaluating the series. R = 0.001.  Sumexp1.m

      M         
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     500     5.674721017860   -1.55908e-002   

   1000     5.753711069371   -1.88820e-003   

   1500     5.762987316810   -2.79024e-004   

   2000     5.764335824217   -4.50949e-005   

   2500     5.764551535228   -7.67495e-006   

   3000     5.764587988867   -1.35124e-006   

   3500     5.764594373585   -2.43667e-007   

   4000     5.764595520362   -4.47323e-008   

   4500     5.764595730227   -8.32651e-009   

   5000     5.764595769192   -1.56713e-009   

   5500     5.764595776510   -2.97613e-010   

   6000     5.764595777898   -5.69355e-011   

   6500     5.764595778163   -1.09509e-011   

   7000     5.764595778214   -2.10728e-012   

   7500     5.764595778224   -3.96896e-013   

   8000     5.764595778226   -6.42492e-014   

   8500     5.764595778226   0.00000e+000   

Table 5. Number of terms in the S1 series for C = 10-10 

	R
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	0.001
	5829
	5860
	6375

	0.01
	597
	604
	637

	0.05
	122
	125
	127

	0.1
	62
	63
	63


Table 6. Number of terms in the S2 series for C = 10-10 . sumexp2 for 2,exact, sumexp2 for 2,int, sumint.m for 2, app.
	R
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	0.001
	3723
	3864
	3899

	0.01
	435
	452
	453

	0.05
	97
	100
	99

	0.1
	51
	52
	51
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